Fuzzy Rule Selection Using Evolutionary Multiobjective Optimization Methods
نویسندگان
چکیده
منابع مشابه
Fuzzy Optimality and Evolutionary Multiobjective Optimization
Pareto optimality is someway ineffective for optimization problems with several (more than three) objectives. In fact the Pareto optimal set tends to become a wide portion of the whole design domain search space with the increasing of the numbers of objectives. Consequently, little or no help is given to the human decision maker. Here we use fuzzy logic to give two new definitions of optimality...
متن کاملEvolutionary Multiobjective Optimization Using a Fuzzy-based Dominance Concept
One aspect that is often disregarded in evolutionary multiobjective research is the fact that the solution of a problem involves not only search but decision making. Most of approaches concentrate on adapting an evolutionary algorithm to generate the Pareto frontier. In this work we present a new idea to incorporate preferences in MOEA. We introduce a binary fuzzy preference relation that expre...
متن کاملEvolutionary Multiobjective Optimization for Fuzzy Knowledge Extraction
− A new trend in the design of fuzzy rulebased systems is the use of evolutionary multiobjective optimization (EMO) algorithms. This trend is observed in various areas in machine learning. EMO algorithms are often used to search for a number of Pareto-optimal non-linear systems with respect to their accuracy and complexity. In this paper, we first explain some basic concepts in multiobjective o...
متن کاملMultiobjective optimization using evolutionary algorithms
Evolutionary algorithms (EAs) such as evolution strategies and genetic algorithms have become the method of choice for optimization problems that are too complex to be solved using deterministic techniques such as linear programming or gradient (Jacobian) methods. The large number of applications (Beasley (1997)) and the continuously growing interest in this field are due to several advantages ...
متن کاملEvolutionary Multiobjective Optimization for Generating an Ensemble of Fuzzy Rule-Based Classifiers
One advantage of evolutionary multiobjective optimization (EMO) algorithms over classical approaches is that many non-dominated solutions can be simultaneously obtained by their single run. In this paper, we propose an idea of using EMO algorithms for constructing an ensemble of fuzzy rule-based classifiers with high diversity. The classification of new patterns is performed based on the vote o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Institute of Systems, Control and Information Engineers
سال: 2004
ISSN: 1342-5668,2185-811X
DOI: 10.5687/iscie.17.278